用户工具

站点工具


knowledge:electronic:2017051901

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
knowledge:electronic:2017051901 [2017/05/19 04:05]
弘毅
knowledge:electronic:2017051901 [2017/10/05 03:19] (当前版本)
行 12: 行 12:
 确定系统整体误差的常见方法有两种:均方根和(RSS)、最差工作条件下的测试。采用RSS时,对每项误差取平均,然后求和并计算开方值。RSS误差由下式计算: 确定系统整体误差的常见方法有两种:均方根和(RSS)、最差工作条件下的测试。采用RSS时,对每项误差取平均,然后求和并计算开方值。RSS误差由下式计算:
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-024630.png?​nolink|}}+{{:​knowledge:​electronic:​pasted:​20170519-024630.png?​nolink|}}
  
 其中EN代表某个特定电路元件或参数的误差项。当所有误差不相干时这种方法最准确(实际情况可能如此,也可能不同)。利用最差条件分析法,所有误差项相加。这种方法能够确保误差植不会超出规定范围,它给出了最差条件下的误差限制,实际误差始终小于该值(通常会低出若干倍)。 其中EN代表某个特定电路元件或参数的误差项。当所有误差不相干时这种方法最准确(实际情况可能如此,也可能不同)。利用最差条件分析法,所有误差项相加。这种方法能够确保误差植不会超出规定范围,它给出了最差条件下的误差限制,实际误差始终小于该值(通常会低出若干倍)。
行 29: 行 29:
 虽说不被作为一项关键性的ADC参数,微分非线性(DNL)误差还是进入我们视野的第一项指标。DNL揭示了一个输出码与其相邻码之间的间隔。这个间隔通过测量输入电压的幅度变化,然后转换为以LSB为单位后得到(图1)。值得注意的是INL是DNL的积分,这就是为什么DNL没有被我们看作关键参数的原因所在。一个性能优良的ADC常常声称“无丢码”。这就是说当输入电压扫过输入范围时,所有输出码组合都会依次出现在转换器输出端。当DNL误差小于±1LSB时就能够保证没有丢码(图1a)。图1b、图1c和图1d分别显示了三种DNL误差值。DNL为-0.5LSB时(图1b),器件保证没有丢码。若该误差值等于-1LSB (图1c),器件就不能保证没有丢码,值得注意的是10码丢失。然而,当最大DNL误差值为±1时,大多数ADC都会特别声明是否有丢码。由于制造时的测试界限实际上要比规格书中所规定的更为严格,因此这种情况下通常都能够保证没有丢码。对于一个大于-1LSB (图1d中为-1.5LSB)的DNL,器件就会有丢码。 虽说不被作为一项关键性的ADC参数,微分非线性(DNL)误差还是进入我们视野的第一项指标。DNL揭示了一个输出码与其相邻码之间的间隔。这个间隔通过测量输入电压的幅度变化,然后转换为以LSB为单位后得到(图1)。值得注意的是INL是DNL的积分,这就是为什么DNL没有被我们看作关键参数的原因所在。一个性能优良的ADC常常声称“无丢码”。这就是说当输入电压扫过输入范围时,所有输出码组合都会依次出现在转换器输出端。当DNL误差小于±1LSB时就能够保证没有丢码(图1a)。图1b、图1c和图1d分别显示了三种DNL误差值。DNL为-0.5LSB时(图1b),器件保证没有丢码。若该误差值等于-1LSB (图1c),器件就不能保证没有丢码,值得注意的是10码丢失。然而,当最大DNL误差值为±1时,大多数ADC都会特别声明是否有丢码。由于制造时的测试界限实际上要比规格书中所规定的更为严格,因此这种情况下通常都能够保证没有丢码。对于一个大于-1LSB (图1d中为-1.5LSB)的DNL,器件就会有丢码。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-024828.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-024828.png?​nolink}}
 \\ 图1a. DNL误差:没有丢码。 \\ 图1a. DNL误差:没有丢码。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-024918.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-024918.png?​nolink}}
 \\ 图1b. DNL误差:没有丢码。 ​ \\ 图1b. DNL误差:没有丢码。 ​
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-024959.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-024959.png?​nolink}}
 \\ 图1c. DNL误差:丢失10码。 \\ 图1c. DNL误差:丢失10码。
    
行 54: 行 54:
 失调和增益误差很容易利用微控制器(µC)或数字信号处理器(DSP)修正过来。就失调误差来讲,如果转换器允许双极性输入信号的话,操作将非常简单。对于双极性系统,失调误差只是平移了转换函数,但没有减少可用编码的数量(图2)。有两套方法可以使双极性误差归零。其一,你可以将转换函数的x或y轴平移,使负满度点与单极性系统的零点相对准(图3a)。利用这种方法,可以简单地消除失调误差,然后,通过围绕“新”零点旋转转换函数可以对增益误差进行调节。第二种技术采用了一种迭代法。首先给ADC输入施加一个0V电压并执行一次转换;转换结果反映了双极性零点失调误差。然后,通过围绕负满度点旋转转换曲线实现增益调节(图3b)。注意此时转换函数已绕A点转过一定角度,使零点偏离了期望的转换函数。因此还需要进一步的失调误差校正。 失调和增益误差很容易利用微控制器(µC)或数字信号处理器(DSP)修正过来。就失调误差来讲,如果转换器允许双极性输入信号的话,操作将非常简单。对于双极性系统,失调误差只是平移了转换函数,但没有减少可用编码的数量(图2)。有两套方法可以使双极性误差归零。其一,你可以将转换函数的x或y轴平移,使负满度点与单极性系统的零点相对准(图3a)。利用这种方法,可以简单地消除失调误差,然后,通过围绕“新”零点旋转转换函数可以对增益误差进行调节。第二种技术采用了一种迭代法。首先给ADC输入施加一个0V电压并执行一次转换;转换结果反映了双极性零点失调误差。然后,通过围绕负满度点旋转转换曲线实现增益调节(图3b)。注意此时转换函数已绕A点转过一定角度,使零点偏离了期望的转换函数。因此还需要进一步的失调误差校正。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031115.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-031115.png?​nolink}}
 图2. 双极性系统的失调误差 图2. 双极性系统的失调误差
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031217.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-031217.png?​nolink}}
 \\ 图3a. \\ 图3a.
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031238.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-031238.png?​nolink}}
 \\ 图3b; \\ 图3b;
  
行 67: 行 67:
 单极性系统还要复杂一些。如果失调为正值,可采用和双极性系统相似的处理方法。不同之处在于你将失去一部分ADC量程(见图4)。如果失调为负值,你将无法简单地通过一次转换测得失调误差。因为在零点以下,转换器只能显示出零。这样,对于一个负失调误差的转换器,你必须缓慢地增加输入电压,以确定在什么地方ADC结果出现首次跳变。同样,你将失去一部分ADC量程。 单极性系统还要复杂一些。如果失调为正值,可采用和双极性系统相似的处理方法。不同之处在于你将失去一部分ADC量程(见图4)。如果失调为负值,你将无法简单地通过一次转换测得失调误差。因为在零点以下,转换器只能显示出零。这样,对于一个负失调误差的转换器,你必须缓慢地增加输入电压,以确定在什么地方ADC结果出现首次跳变。同样,你将失去一部分ADC量程。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031533.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-031533.png?​nolink}}
 \\ 图4. 单极性系统中的失调误差 \\ 图4. 单极性系统中的失调误差
  
行 75: 行 75:
 增益误差定义为满量程误差减去失调误差(图5)。满量程误差在转换函数曲线上最后一次ADC跳变处进行测量,并和理想ADC的转换函数相比较。增益误差可通过软件用一个简单的线性函数y = (m1/​m2)(x)进行简单的校正,其中的m1是理想转换函数的斜率,m2是实际测得的转换函数的斜率(图5)。 增益误差定义为满量程误差减去失调误差(图5)。满量程误差在转换函数曲线上最后一次ADC跳变处进行测量,并和理想ADC的转换函数相比较。增益误差可通过软件用一个简单的线性函数y = (m1/​m2)(x)进行简单的校正,其中的m1是理想转换函数的斜率,m2是实际测得的转换函数的斜率(图5)。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031610.png?​nolink}}+{{:​knowledge:​electronic:​pasted:​20170519-031610.png?​nolink}}
 \\ 图5. 失调、增益和满量程误差 \\ 图5. 失调、增益和满量程误差
  
 增益误差指标中可能包含或不含ADC参考电压对于误差的贡献。在电气规范中,检查一下增益误差的测试条件,并决定采用内部或外部基准工作是非常重要的。一般情况下,当采用片内基准时增益误差会比较大。如果增益误差为零,在对满量程模拟输入作转换时转换结果应为全1 (对于本例的12位系统则为3FFh) (见图6) 。由于我们的转换器不理想,全1转换结果可能会在施加的输入电压大于满量程(负增益误差)或小于满量程(正增益误差)时出现。有两种办法可以调整增益误差,其一是调节参考电压,以便在某特定参考电压下得到满量程输出,或者在软件中采用一个线性校正曲线改变ADC转换函数的斜率(一阶线性方程或查表法)。 增益误差指标中可能包含或不含ADC参考电压对于误差的贡献。在电气规范中,检查一下增益误差的测试条件,并决定采用内部或外部基准工作是非常重要的。一般情况下,当采用片内基准时增益误差会比较大。如果增益误差为零,在对满量程模拟输入作转换时转换结果应为全1 (对于本例的12位系统则为3FFh) (见图6) 。由于我们的转换器不理想,全1转换结果可能会在施加的输入电压大于满量程(负增益误差)或小于满量程(正增益误差)时出现。有两种办法可以调整增益误差,其一是调节参考电压,以便在某特定参考电压下得到满量程输出,或者在软件中采用一个线性校正曲线改变ADC转换函数的斜率(一阶线性方程或查表法)。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031705.png?​nolink}} ​+{{:​knowledge:​electronic:​pasted:​20170519-031705.png?​nolink}} ​
 \\ 图6. 增益误差降低了动态范围 \\ 图6. 增益误差降低了动态范围
  
行 104: 行 104:
 温漂是规格书中最容易被忽视的一项指标。下面的举例可以说明温度漂移是如何影响ADC性能的(图7)。对于一个12位转换器,要在整个扩展级温度范围(-40°C至+85°C)内保持精度,最大允许的温漂为4ppm/​°C。不幸的是,没有任何一个ADC包含有这样高性能的片内基准。如果我们放松要求,将温度范围限制于10°C以内,那么12位ADC的参考电压最多允许25ppm/​°C的温度漂移,这对于片内基准来讲仍然是相当严格的要求。即便进行多次样机测试也不能发现这种误差的严重性,因为所采用的元件通常都来自于同一批次。这样,测试结果不能反映规格书中的极端情况,这主要是由于制造工艺的变化而导致。 温漂是规格书中最容易被忽视的一项指标。下面的举例可以说明温度漂移是如何影响ADC性能的(图7)。对于一个12位转换器,要在整个扩展级温度范围(-40°C至+85°C)内保持精度,最大允许的温漂为4ppm/​°C。不幸的是,没有任何一个ADC包含有这样高性能的片内基准。如果我们放松要求,将温度范围限制于10°C以内,那么12位ADC的参考电压最多允许25ppm/​°C的温度漂移,这对于片内基准来讲仍然是相当严格的要求。即便进行多次样机测试也不能发现这种误差的严重性,因为所采用的元件通常都来自于同一批次。这样,测试结果不能反映规格书中的极端情况,这主要是由于制造工艺的变化而导致。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031727.png}}+{{:​knowledge:​electronic:​pasted:​20170519-031727.png}}
 \\ 图7. 电压基准温漂要求和ADC分辨率的关系 \\ 图7. 电压基准温漂要求和ADC分辨率的关系
  
 对有些系统来讲,参考电压的精度不是一个大问题,因为温度被保持于恒定,避免了温度漂移问题。还有一些系统采用一种比例测量方式,用同一个信号激励传感器和作为参考电压,可以消除基准引起的误差(图8)。因为激励源和基准同时漂移,漂移误差相互抵消。 对有些系统来讲,参考电压的精度不是一个大问题,因为温度被保持于恒定,避免了温度漂移问题。还有一些系统采用一种比例测量方式,用同一个信号激励传感器和作为参考电压,可以消除基准引起的误差(图8)。因为激励源和基准同时漂移,漂移误差相互抵消。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-031748.png}}+{{:​knowledge:​electronic:​pasted:​20170519-031748.png}}
 \\ 图8. 比例式ADC转换 \\ 图8. 比例式ADC转换
  
行 139: 行 139:
 有些ADC只在输入信号接近于直流时能很好地工作。另外一些则能很好地处理从直流到Nyquist特频率的信号。仅有DNL和INL符合系统要求并不能说明转换器能够同样合格地处理交流信号。DNL和INL是在直流测试的。要掌握其交流性能就必须了解交流指标。在产品规格书中有电气参数表和典型工作特性,从中你可以找到有关交流性能的线索。需要考察的关键指标有信号–噪声比(SNR),信号–噪声加失真比(SINAD),总谐波失真(THD),以及无杂散动态范围(SFDR)。首先我们来看一看SINAD或SNR。SINAD定义为输入正弦波信号的RMS值与转换器噪声的RMS值(从直流到Nyquist特频率,包括谐波[总谐波波失真]成分)。谐波发生于输入频率的倍数位(图9)。SNR类似于SINAD,只是它不包含谐波成分。因此,SNR总是好于SINAD。SINAD和SNR一般以dB为单位。 有些ADC只在输入信号接近于直流时能很好地工作。另外一些则能很好地处理从直流到Nyquist特频率的信号。仅有DNL和INL符合系统要求并不能说明转换器能够同样合格地处理交流信号。DNL和INL是在直流测试的。要掌握其交流性能就必须了解交流指标。在产品规格书中有电气参数表和典型工作特性,从中你可以找到有关交流性能的线索。需要考察的关键指标有信号–噪声比(SNR),信号–噪声加失真比(SINAD),总谐波失真(THD),以及无杂散动态范围(SFDR)。首先我们来看一看SINAD或SNR。SINAD定义为输入正弦波信号的RMS值与转换器噪声的RMS值(从直流到Nyquist特频率,包括谐波[总谐波波失真]成分)。谐波发生于输入频率的倍数位(图9)。SNR类似于SINAD,只是它不包含谐波成分。因此,SNR总是好于SINAD。SINAD和SNR一般以dB为单位。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-040042.png}}+{{:​knowledge:​electronic:​pasted:​20170519-040042.png}}
  
 其中N是转换器的位数。对于理想的12位转换器,SINAD为74dB。这个方程可重写为N的表达式,新的表达式揭示了能够获得的信息的位数与RMS噪声的函数关系: 其中N是转换器的位数。对于理想的12位转换器,SINAD为74dB。这个方程可重写为N的表达式,新的表达式揭示了能够获得的信息的位数与RMS噪声的函数关系:
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-040127.png}}+{{:​knowledge:​electronic:​pasted:​20170519-040127.png}}
  
 这个方程就是等效位数的定义,即ENOB。 这个方程就是等效位数的定义,即ENOB。
  
-{{:zh:​knowledge:​electronic:​pasted:​20170519-040147.png}}+{{:​knowledge:​electronic:​pasted:​20170519-040147.png}}
 \\ 图9. FFT图显示出ADC的交流性能 \\ 图9. FFT图显示出ADC的交流性能
  
knowledge/electronic/2017051901.txt · 最后更改: 2017/10/05 03:19 (外部编辑)